Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Euro Surveill ; 29(15)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606571

RESUMO

BackgroundCarbapenemase-producing Enterobacterales are a public health threat worldwide and OXA-48 is the most prevalent carbapenemase in Germany and western Europe. However, the molecular epidemiology of OXA-48 in species other than Escherichia coli and Klebsiella pneumoniae remains poorly understood.AimTo analyse the molecular epidemiology of OXA-48 and OXA-48-like carbapenemases in Citrobacter species (spp.) in Germany between 2011 and 2022.MethodsData of 26,822 Enterobacterales isolates sent to the National Reference Centre (NRC) for Gram-negative bacteria were evaluated. Ninety-one Citrobacter isolates from 40 German hospitals harbouring bla OXA-48/OXA-48­like were analysed by whole genome sequencing and conjugation experiments.ResultsThe frequency of OXA-48 in Citrobacter freundii (CF) has increased steadily since 2011 and is now the most prevalent carbapenemase in this species in Germany. Among 91 in-depth analysed Citrobacter spp. isolates, CF (n = 73) and C. koseri (n = 8) were the most common species and OXA-48 was the most common variant (n = 77), followed by OXA-162 (n = 11) and OXA­181 (n = 3). Forty percent of the isolates belonged to only two sequence types (ST19 and ST22), while most other STs were singletons. The plasmids harbouring bla OXA­48 and bla OXA-162 belonged to the plasmid types IncL (n = 85) or IncF (n = 3), and plasmids harbouring bla OXA­181 to IncX3 (n = 3). Three IncL plasmid clusters (57/85 IncL plasmids) were identified, which were highly transferable in contrast to sporadic plasmids.ConclusionIn CF in Germany, OXA-48 is the predominant carbapenemase. Dissemination is likely due to distinct highly transmissible plasmids harbouring bla OXA­48 or bla OXA-48-like and the spread of the high-risk clonal lineages ST19 and ST22.


Assuntos
Proteínas de Bactérias , Citrobacter , Humanos , Citrobacter/genética , Proteínas de Bactérias/genética , beta-Lactamases/genética , Plasmídeos/genética , Klebsiella pneumoniae/genética , Escherichia coli/genética , Sequenciamento Completo do Genoma , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
2.
Front Bioeng Biotechnol ; 12: 1342418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375452

RESUMO

Gram-negative bacterium Acinetobacter sp. Tol 5 exhibits high adhesiveness to various surfaces of general materials, from hydrophobic plastics to hydrophilic glass and metals, via AtaA, an Acinetobacter trimeric autotransporter adhesin Although the adhesion of Tol 5 is nonspecific, Tol 5 cells may have prefer materials for adhesion. Here, we examined the adhesion of Tol 5 and other bacteria expressing different TAAs to various materials, including antiadhesive surfaces. The results highlighted the stickiness of Tol 5 through the action of AtaA, which enabled Tol 5 cells to adhere even to antiadhesive materials, including polytetrafluoroethylene with a low surface free energy, a hydrophilic polymer brush with steric hindrance, and mica with an ultrasmooth surface. Single-cell force spectroscopy as an atomic force microscopy technique revealed the strong cell adhesion force of Tol 5 to these antiadhesive materials. Nevertheless, Tol 5 cells showed a weak adhesion force toward a zwitterionic 2-methacryloyloxyethyl-phosphorylcholine (MPC) polymer-coated surface. Dynamic flow chamber experiments revealed that Tol 5 cells, once attached to the MPC polymer-coated surface, were exfoliated by weak shear stress. The underlying adhesive mechanism was presumed to involve exchangeable, weakly bound water molecules. Our results will contribute to the understanding and control of cell adhesion of Tol 5 for immobilized bioprocess applications and other TAA-expressing pathogenic bacteria of medical importance.

3.
Nat Microbiol ; 8(11): 2196-2212, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770760

RESUMO

Drug combinations can expand options for antibacterial therapies but have not been systematically tested in Gram-positive species. We profiled ~8,000 combinations of 65 antibacterial drugs against the model species Bacillus subtilis and two prominent pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Thereby, we recapitulated previously known drug interactions, but also identified ten times more novel interactions in the pathogen S. aureus, including 150 synergies. We showed that two synergies were equally effective against multidrug-resistant S. aureus clinical isolates in vitro and in vivo. Interactions were largely species-specific and synergies were distinct from those of Gram-negative species, owing to cell surface and drug uptake differences. We also tested 2,728 combinations of 44 commonly prescribed non-antibiotic drugs with 62 drugs with antibacterial activity against S. aureus and identified numerous antagonisms that might compromise the efficacy of antimicrobial therapies. We identified even more synergies and showed that the anti-aggregant ticagrelor synergized with cationic antibiotics by modifying the surface charge of S. aureus. All data can be browsed in an interactive interface ( https://apps.embl.de/combact/ ).


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Antibacterianos/farmacologia , Bactérias Gram-Positivas , Combinação de Medicamentos
4.
Int J Infect Dis ; 134: 285-286, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454890

RESUMO

A 24-year-old patient from Cameroon presented to our hospital because of a foreign structure in her left eye. To our knowledge, for the first time, fluorescent microscopy revealed motile microfilariae, and the diagnosis of loiasis was established. Despite substantial microfilaremia, eosinophilia only unmasked after the initiation of antiparasitic therapy.


Assuntos
Eosinofilia , Loíase , Humanos , Animais , Feminino , Adulto Jovem , Adulto , Microfilárias , Microscopia , Loíase/diagnóstico , Loíase/tratamento farmacológico , Loíase/parasitologia , Antiparasitários/uso terapêutico , Eosinofilia/diagnóstico , Eosinofilia/tratamento farmacológico , Loa
5.
PLoS Genet ; 19(7): e1010646, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498819

RESUMO

The Gram-negative bacterial pathogen Acinetobacter baumannii is a major cause of hospital-acquired opportunistic infections. The increasing spread of pan-drug resistant strains makes A. baumannii top-ranking among the ESKAPE pathogens for which novel routes of treatment are urgently needed. Comparative genomics approaches have successfully identified genetic changes coinciding with the emergence of pathogenicity in Acinetobacter. Genes that are prevalent both in pathogenic and a-pathogenic Acinetobacter species were not considered ignoring that virulence factors may emerge by the modification of evolutionarily old and widespread proteins. Here, we increased the resolution of comparative genomics analyses to also include lineage-specific changes in protein feature architectures. Using type IVa pili (T4aP) as an example, we show that three pilus components, among them the pilus tip adhesin ComC, vary in their Pfam domain annotation within the genus Acinetobacter. In most pathogenic Acinetobacter isolates, ComC displays a von Willebrand Factor type A domain harboring a finger-like protrusion, and we provide experimental evidence that this finger conveys virulence-related functions in A. baumannii. All three genes are part of an evolutionary cassette, which has been replaced at least twice during A. baumannii diversification. The resulting strain-specific differences in T4aP layout suggests differences in the way how individual strains interact with their host. Our study underpins the hypothesis that A. baumannii uses T4aP for host infection as it was shown previously for other pathogens. It also indicates that many more functional complexes may exist whose precise functions have been adjusted by modifying individual components on the domain level.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecção Hospitalar , Humanos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Filogenia , Infecção Hospitalar/microbiologia , Infecções por Acinetobacter/microbiologia , Hospitais , Antibacterianos
6.
Microbes Infect ; 25(7): 105172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37343664

RESUMO

Human pathogenic bacteria circulating in the bloodstream need to find a way to interact with endothelial cells (ECs) lining the blood vessels to infect and colonise the host. The extracellular matrix (ECM) of ECs might represent an attractive initial target for bacterial interaction, as many bacterial adhesins have reported affinities to ECM proteins, in particular to fibronectin (Fn). Here, we analysed the general role of EC-expressed Fn for bacterial adhesion. For this, we evaluated the expression levels of ECM coding genes in different ECs, revealing that Fn is the highest expressed gene and thereby, it is highly abundant in the ECM environment of ECs. The role of Fn as a mediator in bacterial cell-host adhesion was evaluated in adhesion assays of Acinetobacter baumannii, Bartonella henselae, Borrelia burgdorferi, and Staphylococcus aureus to ECs. The assays demonstrated that bacteria colocalised with Fn fibres, as observed by confocal laser scanning microscopy. Fn removal from the ECM environment (FN1 knockout ECs) diminished bacterial adherence to ECs in both static and dynamic adhesion assays to varying extents, as evaluated via absolute quantification using qPCR. Interactions between adhesins and Fn might represent the crucial step for the adhesion of human-pathogenic Gram-negative and Gram-positive bacteria targeting the ECs as a niche of infection.


Assuntos
Bartonella henselae , Fibronectinas , Humanos , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Bartonella henselae/genética , Bartonella henselae/metabolismo , Células Endoteliais/microbiologia , Fibronectinas/metabolismo
7.
Clin Microbiol Infect ; 29(9): 1198.e1-1198.e6, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37271195

RESUMO

OBJECTIVES: To analyse carbapenemases in Proteus mirabilis and assess the performance of carbapenemase detection assays. METHODS: Eighty-one clinical P. mirabilis isolates with high-level resistance at least to ampicillin (>32 mg/L) or previous detection of carbapenemases were selected and investigated by three susceptibility testing methods (microdilution, automated susceptibility testing, and disk diffusion), six phenotypic carbapenemase assays (CARBA NP, modified carbapenemase inactivation method [CIM], modified zinc-supplemented CIM, simplified CIM, faropenem, and carbapenem-containing agar), two immunochromatographic assays, and whole-genome sequencing. RESULTS: Carbapenemases were detected in 43 of 81 isolates (OXA-48-like [n = 13]; OXA-23 [n = 12]; OXA-58 [n = 12]; New Delhi metallo-ß-lactamase (NDM) [n = 2]; Verona integron-encoded metallo-ß-lactamase (VIM) [n = 2]; Imipenemase (IMP) [n = 1]; Klebsiella pneumoniae carbapenemase (KPC) [n = 1]). Carbapenemase-producing Proteus were frequently susceptible to ertapenem (26/43; 60%), meropenem (28/43; 65%), ceftazidime (33/43; 77%), and some even to piperacillin-tazobactam (9/43; 21%). Sensitivity/specificity of phenotypic tests were 30% (CI: 17-46%)/89% (CI: 75-97%) for CARBA NP, 74% (CI: 60-85%)/82% (CI: 67-91%) for faropenem, 91% (CI: 78-97%)/82% (CI: 66-92%) for simplified CIM, and 93% (CI: 81-99%)/100% (CI: 91-100%) for modified zinc-supplemented CIM. An algorithm for improved detection was developed, which demonstrated sensitivity/specificity of 100% (CI: 92-100%)/100% (CI: 91-100%) on the 81 isolates, and 100% (CI: 29-100%)/100% (CI: 96-100%) in a prospective analysis of additional 91 isolates. Interestingly, several OXA-23-producing isolates belonged to the same clonal lineage reported previously from France. DISCUSSION: Current susceptibility testing methods and phenotypic tests frequently fail to detect carbapenemases in P. mirabilis, which could result in inadequate antibiotic treatment. In addition, the non-inclusion of blaOXA-23/OXA-58 in many molecular carbapenemase assays further impedes their detection. Therefore, the prevalence of carbapenemases in P. mirabilis is likely underestimated. With the herein proposed algorithm, carbapenemase-producing Proteus can be easily identified.


Assuntos
Proteínas de Bactérias , Proteus mirabilis , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/análise , beta-Lactamases/genética , beta-Lactamases/análise , Antibacterianos/farmacologia , Algoritmos , Zinco , Testes de Sensibilidade Microbiana
8.
Microbiol Spectr ; 11(3): e0517422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37052493

RESUMO

Acinetobacter baumannii is an antibiotic-resistant, Gram-negative pathogen that causes a multitude of nosocomial infections. However, pathogenicity mechanisms and the host cell response during infection remain unclear. In this study, we determined virulence traits of A. baumannii clinical isolates belonging to the most widely disseminated international clonal lineage, international cluster 2 (IC2), in vitro and in vivo. Complexome profiling of primary human endothelial cells with A. baumannii revealed that mitochondria, and in particular complexes of the electron transport chain, are important host cell targets. Infection with highly virulent A. baumannii remodelled assembly of mitochondrial protein complexes and led to metabolic adaptation. These were characterized by reduced mitochondrial respiration and glycolysis in contrast to those observed in infection with low-pathogenicity A. baumannii. Perturbation of oxidative phosphorylation, destabilization of mitochondrial ribosomes, and interference with mitochondrial metabolic pathways were identified as important pathogenicity mechanisms. Understanding the interaction of human host cells with the current global A. baumannii clone is the basis to identify novel therapeutic targets. IMPORTANCE Virulence traits of Acinetobacter baumannii isolates of the worldwide most prevalent international clonal lineage, IC2, remain largely unknown. In our study, multidrug-resistant IC2 clinical isolates differed substantially in their virulence potential despite their close genetic relatedness. Our data suggest that, at least for some isolates, mitochondria are important target organelles during infection of primary human endothelial cells. Complexes of the respiratory chain were extensively remodelled after infection with a highly virulent A. baumannii strain, leading to metabolic adaptation characterized by severely reduced respiration and glycolysis. Perturbations of both mitochondrial morphology and mitoribosomes were identified as important pathogenicity mechanisms. Our data might help to further decipher the molecular mechanisms of A. baumannii and host mitochondrial interaction during infection.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Acinetobacter baumannii/genética , Células Endoteliais , Infecções por Acinetobacter/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Proteínas Mitocondriais/uso terapêutico
9.
J Med Virol ; 95(3): e28652, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36897017

RESUMO

The antiviral drugs tecovirimat, brincidofovir, and cidofovir are considered for mpox (monkeypox) treatment despite a lack of clinical evidence. Moreover, their use is affected by toxic side-effects (brincidofovir, cidofovir), limited availability (tecovirimat), and potentially by resistance formation. Hence, additional, readily available drugs are needed. Here, therapeutic concentrations of nitroxoline, a hydroxyquinoline antibiotic with a favourable safety profile in humans, inhibited the replication of 12 mpox virus isolates from the current outbreak in primary cultures of human keratinocytes and fibroblasts and a skin explant model by interference with host cell signalling. Tecovirimat, but not nitroxoline, treatment resulted in rapid resistance development. Nitroxoline remained effective against the tecovirimat-resistant strain and increased the anti-mpox virus activity of tecovirimat and brincidofovir. Moreover, nitroxoline inhibited bacterial and viral pathogens that are often co-transmitted with mpox. In conclusion, nitroxoline is a repurposing candidate for the treatment of mpox due to both antiviral and antimicrobial activity.


Assuntos
Reposicionamento de Medicamentos , Nitroquinolinas , Humanos , Antibacterianos/farmacologia , Antivirais/farmacologia , Cidofovir , Nitroquinolinas/farmacologia
10.
Antibiotics (Basel) ; 11(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36421315

RESUMO

Colistin (polymyxin E) is increasingly used as a last-resort antibiotic for the treatment of severe infections with multidrug-resistant Gram-negative bacteria. In contrast to human medicine, colistin is also used in veterinary medicine for metaphylaxis. Our objective was to decipher common colistin resistance mechanisms in Klebsiella pneumoniae isolates from animals. In total, 276 veterinary K. pneumoniae isolates, derived from companion animals or livestock, and 12 isolates from human patients were included for comparison. Six out of 276 veterinary isolates were colistin resistant (2.2%). Human isolates belonging to high-risk clonal lineages (e.g., ST15, ST101, ST258), displayed multidrug-resistant phenotypes and harboured many resistance genes compared to the veterinary isolates. However, the common colistin resistance mechanism in both human and animal K. pneumoniae isolates were diverse alterations of MgrB, a critical regulator of lipid A modification. Additionally, deleterious variations of lipopolysaccharide (LPS)-associated proteins (e.g., PmrB P95L, PmrE P89L, LpxB A152T) were identified. Phylogenetic analysis and mutation patterns in genes encoding LPS-associated proteins indicated that colistin resistance mechanisms developed independently in human and animal isolates. Since only very few antibiotics remain to treat infections with MDR bacteria, it is important to further analyse resistance mechanisms and the dissemination within different isolates and sources.

11.
Antimicrob Agents Chemother ; 66(11): e0078722, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36200773

RESUMO

OXA-48 is the most common carbapenemase in Enterobacterales in Germany and many other European countries. Depending on the genomic location of blaOXA-48, OXA-48-producing isolates vary in phenotype and intra- and interspecies transferability of blaOXA-48. In most bacterial isolates, blaOXA-48 is located on one of seven variants of Tn1999 (Tn1999.1 to Tn1999.6 and invTn1999.2). Here, a novel Tn1999 variant, Tn1999.7, is described, which was identified in 11 clinical isolates from 2016 to 2020. Tn1999.7 differs from Tn1999.1 by the insertion of the 8,349-bp Tn3 family transposon Tn7442 between the lysR gene and blaOXA-48 open reading frame. Tn7442 carries genes coding for a restriction endonuclease and a DNA methyltransferase as cargo, forming a type III restriction modification system. Tn1999.7 was carried on an ~71-kb IncL plasmid in 9/11 isolates. In one isolate, Tn1999.7 was situated on an ~76-kb plasmid, harboring an additional insertion sequence in the plasmid backbone. In one isolate, the plasmid size is only ~63 kb due to a deletion adjacent to Tn7442 that extends into the plasmid backbone. Mean conjugation rates of the Tn1999.7-harboring plasmids in J53 ranged from 4.47 × 10-5 to 2.03 × 10-2, similar to conjugation rates of other pOXA-48-type IncL plasmids. The stability of plasmids with Tn1999.7 was significantly higher than that of a Tn1999.2-harboring plasmid in vitro. This increase in stability could be related to the insertion of a restriction-modification system, which can promote postsegregational killing. The increased plasmid stability associated with Tn1999.7 could contribute to the further spread of OXA-48.


Assuntos
Proteínas de Bactérias , Elementos de DNA Transponíveis , Plasmídeos , beta-Lactamases , Proteínas de Bactérias/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , Elementos de DNA Transponíveis/genética , Europa (Continente) , Alemanha , Plasmídeos/genética , Enterobacteriaceae/genética , Enterobacteriaceae/patogenicidade , Variação Genética
12.
Front Immunol ; 13: 942482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958553

RESUMO

Multidrug-resistant Acinetobacter baumannii is known to be one of the leading pathogens that cause severe nosocomial infections. To overcome eradication by the innate immune system during infection, A. baumannii developed a number of immune evasion strategies. Previously, we identified CipA as a plasminogen-binding and complement-inhibitory protein. Here we show that CipA inhibits all three complement activation pathways and interacts with key complement components C3, C3b, C4b, C5, Factor B, Factor D, and in particular Factor I. CipA also targets function of the C5 convertase as cleavage of C5 was impaired. Systematic screening of CipA variants identified two separate binding sites for C3b and a Factor I-interacting domain located at the C-terminus. Structure predictions using AlphaFold2 and binding analyses employing CipA variants lacking Factor I-binding capability confirmed that the orientation of the C-terminal domain is essential for the interaction with Factor I. Hence, our analyses point to a novel Factor I-dependent mechanisms of complement inactivation mediated by CipA of A. baumannii. Recruitment of Factor I by CipA initiates the assembly of a quadripartite complex following binding of either Factor H or C4b-binding protein to degrade C3b and C4b, respectively. Loss of Factor I binding in a CipA-deficient strain, or a strain producing a CipA variant lacking Factor I-binding capability, correlated with a higher susceptibility to human serum, indicating that recruitment of Factor I enables A. baumannii to resist complement-mediated killing.


Assuntos
Acinetobacter baumannii , Ativação do Complemento , Convertases de Complemento C3-C5/metabolismo , Fator B do Complemento/metabolismo , Fibrinogênio/metabolismo , Humanos
13.
Antibiotics (Basel) ; 11(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36009982

RESUMO

Infection of a cerebrospinal fluid system is a serious medical complication. We performed a retrospective monocentric analysis on temporary and permanent cerebrospinal fluid devices in children with and without cancer, covering a period of over 14 years. Between 2004 and 2017, 275 children with a cerebrospinal fluid system were seen at our institution. Thirty-eight children suffered from 51 microbiologically proven infectious episodes of the cerebrospinal fluid system (12 children with cancer and 26 children without cancer). Independently of the cerebrospinal fluid system used, the incidence of infection did not significantly differ between children with and without cancer and was the highest in children younger than one year. Infection occurred earlier in external ventricular drain (EVD) than ventriculoperitoneal (VP) shunt, and in EVD significantly earlier in children with cancer compared with patients without cancer. The pathogens isolated were mainly Gram-positive bacteria, in particular Staphylococcus spp., which should be taken into account for empirical antimicrobial therapy.

14.
PLoS Genet ; 18(6): e1010020, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35653398

RESUMO

Nosocomial pathogens of the Acinetobacter calcoaceticus-baumannii (ACB) complex are a cautionary example for the world-wide spread of multi- and pan-drug resistant bacteria. Aiding the urgent demand for novel therapeutic targets, comparative genomics studies between pathogens and their apathogenic relatives shed light on the genetic basis of human-pathogen interaction. Yet, existing studies are limited in taxonomic scope, sensing of the phylogenetic signal, and resolution by largely analyzing genes independent of their organization in functional gene clusters. Here, we explored more than 3,000 Acinetobacter genomes in a phylogenomic framework integrating orthology-based phylogenetic profiling and microsynteny conservation analyses. We delineate gene clusters in the type strain A. baumannii ATCC 19606 whose evolutionary conservation indicates a functional integration of the subsumed genes. These evolutionarily stable gene clusters (ESGCs) reveal metabolic pathways, transcriptional regulators residing next to their targets but also tie together sub-clusters with distinct functions to form higher-order functional modules. We shortlisted 150 ESGCs that either co-emerged with the pathogenic ACB clade or are preferentially found therein. They provide a high-resolution picture of genetic and functional changes that coincide with the manifestation of the pathogenic phenotype in the ACB clade. Key innovations are the remodeling of the regulatory-effector cascade connecting LuxR/LuxI quorum sensing via an intermediate messenger to biofilm formation, the extension of micronutrient scavenging systems, and the increase of metabolic flexibility by exploiting carbon sources that are provided by the human host. We could show experimentally that only members of the ACB clade use kynurenine as a sole carbon and energy source, a substance produced by humans to fine-tune the antimicrobial innate immune response. In summary, this study provides a rich and unbiased set of novel testable hypotheses on how pathogenic Acinetobacter interact with and ultimately infect their human host. It is a comprehensive resource for future research into novel therapeutic strategies.


Assuntos
Infecções por Acinetobacter , Acinetobacter calcoaceticus , Infecções por Acinetobacter/genética , Infecções por Acinetobacter/microbiologia , Acinetobacter calcoaceticus/genética , Carbono , Humanos , Família Multigênica/genética , Filogenia , Virulência
15.
mSystems ; 7(1): e0048821, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35103489

RESUMO

The spread of antibiotic-resistant Acinetobacter baumannii poses a significant threat to public health worldwide. This nosocomial bacterial pathogen can be associated with life-threatening infections, particularly in intensive care units. A. baumannii is mainly described as an extracellular pathogen with restricted survival within cells. This study shows that a subset of A. baumannii clinical isolates extensively multiply within nonphagocytic immortalized and primary cells without the induction of apoptosis and with bacterial clusters visible up to 48 h after infection. This phenotype was observed for the A. baumannii C4 strain associated with high mortality in a hospital outbreak and the A. baumannii ABC141 strain, which was isolated from the skin but was found to be hyperinvasive. Intracellular multiplication of these A. baumannii strains occurred within spacious single membrane-bound vacuoles, labeled with the lysosomal associate membrane protein (LAMP1). However, these compartments excluded lysotracker, an indicator of acidic pH, suggesting that A. baumannii can divert its trafficking away from the lysosomal degradative pathway. These compartments were also devoid of autophagy features. A high-content microscopy screen of 43 additional A. baumannii clinical isolates highlighted various phenotypes, and (i) the majority of isolates remained extracellular, (ii) a significant proportion was capable of invasion and limited persistence, and (iii) three more isolates efficiently multiplied within LAMP1-positive vacuoles, one of which was also hyperinvasive. These data identify an intracellular niche for specific A. baumannii clinical isolates that enables extensive multiplication in an environment protected from host immune responses and out of reach of many antibiotics. IMPORTANCE Multidrug-resistant Acinetobacter baumannii isolates are associated with significant morbidity and mortality in hospitals worldwide. Understanding their pathogenicity is critical for improving therapeutic management. Although A. baumannii can steadily adhere to surfaces and host cells, most bacteria remain extracellular. Recent studies have shown that a small proportion of bacteria can invade cells but present limited survival. We have found that some A. baumannii clinical isolates can establish a specialized intracellular niche that sustains extensive intracellular multiplication for a prolonged time without induction of cell death. We propose that this intracellular compartment allows A. baumannii to escape the cell's normal degradative pathway, protecting bacteria from host immune responses and potentially hindering antibiotic accessibility. This may contribute to A. baumannii persistence, relapsing infections, and enhanced mortality in susceptible patients. A high-content microscopy-based screen confirmed that this pathogenicity trait is present in other clinical A. baumannii isolates. There is an urgent need for new antibiotics or alternative antimicrobial approaches, particularly to combat carbapenem-resistant A. baumannii. The discovery of an intracellular niche for this pathogen, as well as hyperinvasive isolates, may help guide the development of antimicrobial therapies and diagnostics in the future.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Anti-Infecciosos , Humanos , Acinetobacter baumannii/genética , Incidência , beta-Lactamases/genética , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Infecções por Acinetobacter/tratamento farmacológico , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia
16.
Antimicrob Agents Chemother ; 66(2): e0183421, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34930027

RESUMO

Magnusiomyces clavatus and Magnusiomyces capitatus are emerging yeasts with intrinsic resistance to many commonly used antifungal agents. Identification is difficult, and determination of susceptibility patterns with commercial and reference methods is equally challenging. For this reason, few data on invasive infections by Magnusiomyces spp. are available. Our objectives were to determine the epidemiology and susceptibility of Magnusiomyces isolates from bloodstream infections (BSI) isolated in Germany and Austria from 2001 to 2020. In seven institutions, a total of 34 Magnusiomyces BSI were identified. Identification was done by internal transcribed spacer (ITS) sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Antifungal susceptibility was determined by EUCAST broth microdilution and gradient tests. Of the 34 isolates, M. clavatus was more common (n = 24) than M. capitatus (n = 10). BSI by Magnusiomyces spp. were more common in men (62%) and mostly occurred in patients with hemato-oncological malignancies (79%). The highest in vitro antifungal activity against M. clavatus/M. capitatus was observed for voriconazole (MIC50, 0.03/0.125 mg/L), followed by posaconazole (MIC50, 0.125/0.25 mg/L). M. clavatus isolates showed overall lower MICs than M. capitatus. With the exception of amphotericin B, low essential agreement between gradient test and microdilution was recorded for all antifungals (0 to 70%). Both species showed distinct morphologic traits on ChromAgar Orientation medium and Columbia blood agar, which can be used for differentiation if no MALDI-TOF MS or molecular identification is available. In conclusion, most BSI were caused by M. clavatus. The lowest MICs were recorded for voriconazole. Gradient tests demonstrated unacceptably low agreement and should preferably not be used for susceptibility testing of Magnusiomyces spp.


Assuntos
Saccharomycetales , Sepse , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Humanos , Masculino , Testes de Sensibilidade Microbiana , Filogenia , Saccharomycetales/genética , Sepse/tratamento farmacológico
17.
Front Microbiol ; 12: 791574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880850

RESUMO

Background: Carbapenem-resistant Gram-negative bacteria (CRGN) cause life-threatening infections due to limited antimicrobial treatment options. The occurrence of CRGN is often linked to hospitalization and antimicrobial treatment but remains incompletely understood. CRGN are common in patients with severe illness (e.g., liver transplantation patients). Using whole-genome sequencing (WGS), we aimed to elucidate the evolution of CRGN in this vulnerable cohort and to reconstruct potential transmission routes. Methods: From 351 patients evaluated for liver transplantation, 18 CRGN isolates (from 17 patients) were analyzed. Using WGS and bioinformatic analysis, genotypes and phylogenetic relationships were explored. Potential epidemiological links were assessed by analysis of patient charts. Results: Carbapenem-resistant (CR) Klebsiella pneumoniae (n=9) and CR Pseudomonas aeruginosa (n=7) were the predominating pathogens. In silico analysis revealed that 14/18 CRGN did not harbor carbapenemase-coding genes, whereas in 4/18 CRGN, carbapenemases (VIM-1, VIM-2, OXA-232, and OXA-72) were detected. Among all isolates, there was no evidence of plasmid transfer-mediated carbapenem resistance. A close phylogenetic relatedness was found for three K. pneumoniae isolates. Although no epidemiological context was comprehensible for the CRGN isolates, evidence was found that the isolates resulted of a transmission of a carbapenem-susceptible ancestor before individual radiation into CRGN. Conclusion: The integrative epidemiological study reveals a high diversity of CRGN in liver cirrhosis patients. Mutation of carbapenem-susceptible ancestors appears to be the dominant way of CR acquisition rather than in-hospital transmission of CRGN or carbapenemase-encoding genetic elements. This study underlines the need to avoid transmission of carbapenem-susceptible ancestors in vulnerable patient cohorts.

18.
Antibiotics (Basel) ; 10(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34943706

RESUMO

Gram-negative Tripartite Resistance Nodulation and cell Division (RND) superfamily efflux pumps confer various functions, including multidrug and bile salt resistance, quorum-sensing, virulence and can influence the rate of mutations on the chromosome. Multidrug RND efflux systems are often characterized by a wide substrate specificity. Similarly to many other RND efflux pump systems, AcrAD-TolC confers resistance toward SDS, novobiocin and deoxycholate. In contrast to the other pumps, however, it in addition confers resistance against aminoglycosides and dianionic ß-lactams, such as sulbenicillin, aztreonam and carbenicillin. Here, we could show that AcrD from Salmonella typhimurium confers resistance toward several hitherto unreported AcrD substrates such as temocillin, dicloxacillin, cefazolin and fusidic acid. In order to address the molecular determinants of the S. typhimurium AcrD substrate specificity, we conducted substitution analyses in the putative access and deep binding pockets and in the TM1/TM2 groove region. The variants were tested in E. coli ΔacrBΔacrD against ß-lactams oxacillin, carbenicillin, aztreonam and temocillin. Deep binding pocket variants N136A, D276A and Y327A; access pocket variant R625A; and variants with substitutions in the groove region between TM1 and TM2 conferred a sensitive phenotype and might, therefore, be involved in anionic ß-lactam export. In contrast, lower susceptibilities were observed for E. coli cells harbouring deep binding pocket variants T139A, D176A, S180A, F609A, T611A and F627A and the TM1/TM2 groove variant I337A. This study provides the first insights of side chains involved in drug binding and transport for AcrD from S. typhimurium.

20.
Front Microbiol ; 12: 660094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054758

RESUMO

OXA-48-like carbapenemases are among the most frequent carbapenemases in Gram-negative Enterobacterales worldwide with the highest prevalence in the Middle East, North Africa and Europe. Here, we investigated the so far uncharacterized carbapenemase OXA-484 from a clinical E. coli isolate belonging to the high-risk clone ST410 regarding antibiotic resistance pattern, horizontal gene transfer (HGT) and genetic support. OXA-484 differs by the amino acid substitution 214G compared to the most closely related variants OXA-181 (214R) and OXA-232 (214S). The bla OXA - 484 was carried on a self-transmissible 51.5 kb IncX3 plasmid (pOXA-484) showing high sequence similarity with plasmids harboring bla OXA - 181. Intraspecies and intergenus HGT of pOXA-484 to different recipients occurred at low frequencies of 1.4 × 10-7 to 2.1 × 10-6. OXA-484 increased MICs of temocillin and carbapenems similar to OXA-232 and OXA-244, but lower compared with OXA-48 and OXA-181. Hence, OXA-484 combines properties of OXA-181-like plasmid support and transferability as well as ß-lactamase activity of OXA-232.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...